Asymptotic distributions of principal components based on robust dispersions

نویسندگان

  • B HENGJIAN CUI
  • XUMING HE
  • KAI W. NG
چکیده

Algebraically, principal components can be defined as the eigenvalues and eigenvectors of a covariance or correlation matrix, but they are statistically meaningful as successive projections of the multivariate data in the direction of maximal variability. An attractive alternative in robust principal component analysis is to replace the classical variability measure, i.e. variance, by a robust dispersion measure. This projection-pursuit approach was first proposed in Li & Chen (1985) as a method of constructing a robust scatter matrix. Recent unpublished work of C. Croux and A. Ruiz-Gazen provided the influence functions of the resulting principal components. The present paper focuses on the asymptotic distributions of robust principal components. In particular, we obtain the asymptotic normality of the principal components that maximise a robust dispersion measure. We also explain the need to use a dispersion functional with a continuous influence function.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic Distributions of Estimators of Eigenvalues and Eigenfunctions in Functional Data

Functional data analysis is a relatively new and rapidly growing area of statistics. This is partly due to technological advancements which have made it possible to generate new types of data that are in the form of curves. Because the data are functions, they lie in function spaces, which are of infinite dimension. To analyse functional data, one way, which is widely used, is to employ princip...

متن کامل

Lyapunov-Based Robust Power Controllers for a Doubly Fed Induction Generator

In this work, a robust nonlinear control technique of a doubly fed induction generator (DFIG) intended for wind energy systems has been proposed. The principal idea in this article is to decouple the active and reactive power of the DFIG with high robustness using the backstepping strategy. The principle of this control method is based on the Lyapunov function, in order to guarantee the global ...

متن کامل

Detecting influential observations in principal components and common principal components

Detecting outlying observations is an important step in any analysis, even when robust estimates are used. In particular, the robustified Mahalanobis distance is a natural measure of outlyingness if one focuses on ellipsoidal distributions. However, it is well known that the asymptotic chi-square approximation for the cutoff value of the Mahalanobis distance based on several robust estimates (l...

متن کامل

Asymptotic distributions of Neumann problem for Sturm-Liouville equation

In this paper we apply the Homotopy perturbation method to derive the higher-order asymptotic distribution of the eigenvalues and eigenfunctions associated with the linear real second order equation of Sturm-liouville type on $[0,pi]$ with Neumann conditions $(y'(0)=y'(pi)=0)$ where $q$ is a real-valued Sign-indefinite number of $C^{1}[0,pi]$ and $lambda$ is a real parameter.

متن کامل

On convergence of sample and population Hilbertian functional principal components

In this article we consider the sequences of sample and population covariance operators for a sequence of arrays of Hilbertian random elements. Then under the assumptions that sequences of the covariance operators norm are uniformly bounded and the sequences of the principal component scores are uniformly sumable, we prove that the convergence of the sequences of covariance operators would impl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003